SPIRE MATHS

2023 Digits Problem

17	$2 \times 3^{2}-0!$
18	$(2-0!+2)!\times 3$
19	$20+2-3$
20	$20 \times(-2+3)$
21	$20-2+3$
41	

No solution found yet
$2+0+2+3$

202^{3}
20^{23}
$20 \times 23!$
$2023!$
$20^{(2+3)}$
$20!^{(2+3)}$

Digits in year order 2023
Digits not in year order
2023: Digits Problem

A Spire Maths Activity

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

2023 Digits Problem

Answers are on page 4. Colour pupil sheet on page 5, black pupil sheet on page 6

1. Make integers using the 4 digits of 2023 each once only, using add, subtract, multiply and divide, with brackets for clarity.
2. After about 5 minutes extend to allow Concatenation
3. After another 5 minutes allow Powers and Factorials noting that
by convention any number to the power 0 is 1 also by convention $0!=1$
4. Most numbers (72%) up to 50 can be made keeping the digits 2023 in that order.
5. The one that can't be made (2%) is: 41
6. Those not in order are (26%) are: 17, 22, 31, 33 to 35,3843 to $45,47,49,50$
7. Some very large numbers can be made using just these rules and some expressions created will 'break' the calculator or spreadsheet.

PowerPoint slides available (Similar also for ActivInspire)
Read down the first column, then down the second:

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

No.	Expression	No.	Expression	No.	Expression
1	$2+0+2-3$	26	$20+(2 \times 3)$	54	$2 \times(0!+2)^{3}$
2	$2 \times(0-2+3)$	27	$(2-0!+2)^{3}$	66	$(20+2) \times 3$
3	$2+0-2+3$	28	$20+2^{3}$	72	$(2+0+2)!\times 3$
4	$2+0!-2+3$	29	$2+(0!+2)^{3}$	100	$20 \times(2+3)$
5	$2 \times 0+2+3$	30	$20 \div 2 \times 3$	117	$(2+0!+2)!-3$
6	$2 \times 0+2 \times 3$	31	$2^{(2+3)}-0$!	120	$20 \times 2 \times 3$
7	$2+0+2+3$	32	$(2+0)^{(2+3)}$	123	$(2+0!+2)!+3$
8	$2+0+(2 \times 3)$	33	$2^{(2+3)}+0!$	199	202-3
9	$(2+0!) \times 2+3$	34	$30+2+2$	205	202+3
10	$(2+0) \times(2+3)$	35	$32+2+0!$	360	$(2+0!+2)!\times 3$
11	$(2+0!)!+2+3$	36	$(2+0!)!\times 2 \times 3$	397	$20^{2}-3$
12	$(2+0+2) \times 3$	37	$20 \times 2-3$	403	$20^{2}+3$
13	$20 \div 2+3$	38	$32+(2+0!)!$	460	20×23
14	$20-(2 \times 3)$	39	$(2+0!)!^{2}+3$	606	202×3
15	20-2-3	40	$(2+0!+2)!\div 3$	1200	$20^{2} \times 3$
16	$2^{(-0!+2+3)}$	41		5832	$(20-2)^{3}$
17	$2 \times 3^{2}-0!$	42	$(2+0!)!+2)!\div 3$	10648	$(20+2)^{3}$
18	$(2-0!+2)!\times 3$	43	$20 \times 2+3$		
19	$20+2-3$	44	$22 \times(3-0!)$		
20	$20 \times(-2+3)$	45	$2 \times 23-0!$		
21	$20-2+3$	46	$(2+0) \times 23$		
22	$(2+2)!-3+0!$	47	$2 \times 23+0!$		
23	$2 \times 0+23$	48	$(2+0!)!\times 2^{3}$		
24	$(2+0!-2+3)!$	49	$((2 \times 3)+0!)^{2}$		
25	$20+2+3$	50	$(3!-0!)^{2} \times 2$		

Materials and spreadsheet founchttps://spiremaths.co.uk/2023/

Convention: all positive integers to power 0 are 1	No solution found yet $4!=1 \times 2 \times 3 \times 4=24$ etc. By convention $0!=1$	$20+2+2$ etc is OK	
	Digits in year order 2023		

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All
2023 Digits Problem
Make these numbers using the digits $2,0,2$ and 2 exactly once each

