SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

Sequences

Download ActivInspire, PowerPoint and Teacher Notes from:
https://spiremaths.co.uk/sequences/

OBJECTIVE(S):

DESCRIPTION and
OVERVIEW:

Generate and describe simple integer linear sequences including from practical contexts. Describe the general term in simple cases. Generate terms of a simple sequence, given a rule (e.g. finding a term from the previous term, finding a term given its position in the sequence).

1. Given first 5 terms of a sequence evaluate the next, the 10th and the 100th; then describe the sequence in words. What are common mistakes in finding these terms? Emphasise common difference and 100 th $\neq 10$ th $\times 10$.
2. Five examples, including descending. Photocopiable master available. Finding the 100th term in descending is difficult (it is negative).
3. The animation shows the term-to-term change of adding three before showing the next, 10th and 100th terms as the 3 times table less 1. You may wish to work through this yourself first 'live' with your pupils before showing the animation. Once it has been seen, you could hide it and have pupils talk it through - with explanations and reasons.
4. Real examples on desk first could be helpful. The animation builds up the first 5 terms of a sequence (sticks or squares). Evaluate the next, the 10th, the 100th and the nth terms. Importance of the common difference (as predictor). Colouring of sticks and squares is important.
5. Nine animated gif sequences can be seen (all at once or individually).
6. Gif shows first five terms of the 'stick' sequence $3 n+1$. Repeated to show how nth term is built up. Question "What do you see?"
7. Important to link nth term with a physical stick/square sequence.
8. Create sequence given term-to-term rule. Find nth term. Link to later work on graphs, gradients and the difference method. Seek reasons.
9. Gif animation for finding nth term where first term is 5 and reule is add 4 ; nth term is $4 n+1$.
10. Five examples of term to term sequences. Answers given.
11. Given nth term of $4 n-2$ find the first term and the rule to geneate the next term (position-to-term).
12. Five examples of position-to-term questions with answers.

Three photocopiable masters.

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

Sequences 3

How do you find the next, the $10^{\text {th }}$ and the $100^{\text {th }}$ term in a sequence? Explain.

1st	2nd	3rd	4th	5th
2	5	8	11	14

Here is one way to do it

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

Generating sequences 2: term to term

First term is 5 . Term-to-term rule is add 4.

1st	2nd	3rd	4th	5th
5	9	13	17	21

How do you find the nth term?

Here is one way to find the nth term

First term is 5. Term-to-term rule is add 4.

The nth term $\quad=n \times 4+1$

$$
=4 n+1
$$

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

Generating sequences 4: position to term

The nth term of the sequence is $4 n-2$.

1st	2nd	3rd	4th	5th
2	6	10	14	18

What are common mistakes that could be made when doing this?

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

Generating sequences 4: position to term

SPIRE MATHS

Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

```
Generating sequences 5 : position to term
```



```
The first term is
The rule to find
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{The nth term of the sequence is \(97-8 \mathrm{n}\).} \\
\hline 1st & 2nd & 3 rd & 4ih & 5th & \({ }^{63} \mathrm{~h}\) \\
\hline 89 & 81 & 73 & 65 & 57 & 49 \\
\hline
\end{tabular}
```

[^0]```
The nth term of the sequence is \(2 n+1\).
\begin{tabular}{l|c|c|c|c|c}
\hline 1st & 2nd & 3nd & 4th & 5th & 6th \\
\hline 3 & 5 & 7 & 9 & 11 & 13
\end{tabular}
The first term is
The rule to find
the next term is
3 \(+2\)
```


## SPIRE MATHS

## Sequences Worksheet 1



## SPIRE MATHS

## Seeing Sequences Worksheet 2



Diagrams


Diagrams


Diagrams


## SPIRE MATHS

## Rules of Sequences Worksheet 3




[^0]:    The first term is 89

